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Changing Tidal Dynamics and the Role of the Marine Environment
in the Maritime Migration to Sahul

ABSTRACT
The marine environment plays a central role in the migration of Homo sapiens to Sahul c. 65,000 years ago. Despite 
the lower mean sea level at this time, humans must have made a maritime crossing from Sunda to Sahul. While 
tidal dynamics greatly affect the coastal environment, models of changing paleotidal conditions are frequently 
missing from reconstructions of coastal landscapes and maritime conditions in the deep past. At present, northern 
Australia is known for its high tidal range and strong current velocity, but tidal dynamics are sensitive to coastal 
geometry and water depths that were very different in the past. This paper presents a barotropic hydrodynamic 
model of the Australian coast to explore how past tidal dynamics would have caused variations in coastal environ-
ments north of Australia, and how tidal currents could have affected seafaring. The results indicate profound but 
complex changes in tidal dynamics along the northern Australian coast throughout the Upper Pleistocene, linked 
to mean sea level fluctuations, which inform the debate about the peopling of Sahul.

This special issue is guest-edited by William Davies (Centre for the Archaeology of Human Origins, University of 
Southampton) and Philip R. Nigst (Department of Prehistoric and Historical Archaeology, University of Vienna). 

INTRODUCTION

The peopling of Sahul represents some of the earliest evi-
dence for seafaring in global history. Even at the great-

est sea level lowstand of the Last Glacial Maximum, move-
ment between Sunda (the exposed shelf of Southeast Asia) 
and Sahul (Australasia) involved a series of water crossings 
through the Wallacean archipelago into New Guinea, and 
or, into Timor and south across to Sahul (Birdsell 1977; Fig-
ures 1 and 2). 

While many Indigenous Aboriginal and Torres Strait 
Islander communities know they have always been on 

Country (Uluru Statement of the Heart 2017), within west-
ern science the timing of these earliest arrivals into Sahul 
is debated. A conservative estimate of 47,000 years ago 
was proposed (O’Connell and Allen 2015; O’Connell et al. 
2018), but a growing body of evidence from new sites and 
re-dating of known sites using different dating methods 
continues to extend this chronology (see Figure 1). Several 
archaeological sites in Australia have been dated to between 
60,000 and 50,000 years ago (Clarkson et al. 2015; Roberts 
1997; Roberts et al. 1990, 1993, 1998). Recently, the site of 
Madjedbebe in Australia’s Northern Territory has been re-
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lower than at present. The relative sea level between Sunda 
and Sahul differed from the global mean sea level due to 
glacio-hydro-isostacy and local tectonic changes. Whereas 
Australia is tectonically relatively stable, Wallacea has been 
subject to uplift over time (Kealy et al. 2017). Uplift rates 
differ throughout the region on a local scale, and more re-
search is needed to constrain changes in the relative sea 
level between Sunda and Sahul. Paleogeographic recon-
structions based on seismic survey of the Bonaparte Gulf 
in northern Australia indicate that sea levels were ca. 80m 
below present during MIS4 (Fogg et al. 2019).

SEAFARING
Early watercraft are rarely preserved in the archaeological 

dated to ca. 65,000 years ago (Clarkson et al. 2017), signifi-
cantly pushing back the date for human arrival in Sahul. 

SEA LEVEL CHANGE
Climatic changes during the Upper Pleistocene caused fluc-
tuations in mean sea level that exposed continental shelves 
to various degrees over time, changing the paleogeography 
of coastal regions. Figure 2 shows a mean sea level curve 
for the past 150,000 years, made using a relative mean sea 
level record from the Red Sea that reflects changes in the 
global mean sea level (Grant et al. 2012). This record shows 
that 65,000 years ago, mean sea level was ca. 100m lower 
than it is at present (De Deckker et al. 2019; Grant et al. 
2012). At 50,000 years ago, it was probably around 75m 

Figure 1. The earliest archaeological sites associated with Homo sapiens in Sunda, Wallacea, and Sahul. For Sahul, only sites of 
which the earliest layers were dated to 45,000 years ago and earlier are included. The map, made using the GEBCO 30 arc-second 
global grid of elevations (GEBCO_2014, version 20150318, www.gebco.net; Weatherall et al. 2015), also shows the depth over the 
continental shelf at 100m, and migration routes proposed by Birdsell (1977). 
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beck 2007; Butlin 1993; Davidson 2013; Field and Mirazón 
Lahr 2005; Kealy et al. 2017; Kealy et al. 2016; Mulvaney 
and Kamminga 1999; O’Connell and Allen 2015; O’Connor 
2007; O’Connor et al. 2002; O’Connor et al. 2010). Recently, 
Kealy et al. (2018) conducted least-cost pathway analysis 
and found support for the northern pathway to Sahul. Sup-
port for this pathway was also found recently by Norman 
et al. (2018) based on visual connectivity network analysis, 
agent-based simulations, and ocean modelling where the 
authors used an ocean circulation model to create maps of 
mean current speeds between Sunda and Sahul. Norman et 
al. (2018) also indicate a good probability of reaching Sahul 
from Timor between 70,000 and 60,000 years ago, during 
the mean sea level lowstand of MIS 4.

Detailed discussion of the dynamic nature of maritime 
space and the experiences of early seafarers has only re-
cently become the focus of research in this region (Bird et 
al. 2018; Bird et al. 2019; Norman et al. 2018), with the avail-
ability of high-resolution numerical models to study ocean 
dynamics. Yet the role of tidal dynamics within these mod-
els, and its effect on regional seafaring in the past, has not 
been explored. 

TIDAL DYNAMICS
Tidal currents influence a range of processes, such as coast-
al flooding and erosion, the vertical zonation of species 
in coastal inter-tidal ecosystems, and sediment transport 
(Haigh et al. 2020). Tidal currents can be especially strong 
in coastal waters, reaching speeds of up to 5m/s or almost 
10 knots (Stewart 2008). As such, tidal currents could have 
been utilized in early navigation and migration allowing 
for rapid movement towards, or away from coastlines. 
However, variations in current velocities over the course of 
the day can create a challenging environment for naviga-
tion. By studying tidal dynamics, we can further question 
the process of seafaring, necessary technology and skill, 
and contribute to discussions on intentionality and routing.

record,  the earliest direct evidence is a Mesolithic logboat 
from the northern hemisphere (i.e., the Pesse logboat; Farr 
2010; van Zeist 1935), although it is likely that simple rafts 
or boats made of logs, reed bundles, skin, or bark were 
used throughout human history. The earliest evidence for 
seafaring is indirect and comes from presence or absence 
of people on islands or isolated landmasses (Farr 2010; Mc-
Grail 2003: 183). The archaeological evidence from Sahul 
and the evidence for its paleogeographic isolation repre-
sents the first uncontested indirect evidence for seafaring 
in global history. While there are many unknowns that 
surround this early evidence of maritime activity, such as 
routing, technology, and skill, the question of intentionality 
of these early voyagers is much debated.

Suggestions that migration to Sahul was unintentional 
(e.g., Smith 2001; Thiel 1987) are not widely accepted. Un-
intentional arrival is judged to be highly unlikely based 
on the distances that had to be covered at sea, the direc-
tion of open ocean currents in the region (Bird et al. 2018; 
Bird et al. 2019; Sprintall et al. 2014), the distinct faunas 
of Southeast Asia and Australasia (other than humans, no 
large mammals have crossed to Australasia in the past; 
O’Connell et al. 2010), and the number of people involved 
in the migration (Bird et al. 2018: 437; Williams 2013). To-
day, the generally accepted view is that the migration was 
deliberate and staged, and that people used some type of 
early marine-capable watercraft such as a bamboo raft or 
log boat (Balme 2013; Birdsell 1977; Bulbeck 2007; David-
son and Noble 1992; Irwin 1992; O’Connell and Allen 2015; 
O’Connell et al. 2010).

Northern and  southern migration routes across Wal-
lacea have been suggested, based on the distances between 
islands, the number of water crossings necessary to reach 
Sahul, and island intervisibility (Birdsell 1977; see Figure 
1). The routes have been widely discussed, and arguments 
have been presented in favor of both pathways (Allen 
and O’Connell 2008; Balme 2013; Balme et al. 2009; Bul-

Figure 2. Sea level curve for the last 150,000 years, based on relative sea level data from the Red Sea (after Grant et al. 2012). The 
figure shows the maximum probability for relative sea level (black) within 2 standard errors (dark grey), and confidence intervals of 
95% (light grey).
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that mainly focus on the Last Glacial Maximum (Arbic et al. 
2008; Egbert et al. 2004; Green et al. 2009; Griffiths and Pel-
tier 2009; Montenegro et al. 2007; Thomas and Sündermann 
1999; Tojo et al. 1999; Uehara et al. 2006; Ward et al. 2013; 
Wilmes and Green 2014). This paper presents a regional 
model implemented with mean sea levels corresponding to 
the period between 65,000 and 50,000 years ago in order to 
consider seafaring to Sahul in deep time.

Here, a depth-averaged barotropic hydrodynamic 
model of the Australian coast is used to simulate tidal dy-
namics over the northern Australian continental shelf, for 
different mean sea level scenarios. The study focuses on 
the Timor Sea, a region identified as likely to have been 
traversed in a migration to Sahul. This route constitutes the 
‘southern’ dispersal route as identified by Birdsell (1977) 
and human activity within this region is evidenced by 
known sites on Timor and the Northern Territory in Sahul, 
i.e., Asitau Kuru and Madjedbebe (Clarkson et al. 2017; 
Clarkson et al. 2015; Langley et al. 2016; O’Connor 2007; 
O’Connor et al. 2011; Shipton et al. 2019). A comparison of 
these tidal scenarios gives insight into the coastal changes 
that took place and is used to examine the effects of tides on 
early seafaring during the migration to Sahul. 

METHODS
The depth-averaged barotropic hydrodynamic model of 
the Australian coast used here was previously developed 
to estimate extreme water level exceedance probabilities 
around Australia (Haigh et al. 2014a; 2014b). The model 
was configured using the MIKE 21 FM coastal modelling 
tool by the Danish Hydraulic Institute (Danish Hydrau-
lic Institute 2016). Validation of the model output against 
measurements from 30 tide gauge sites around the coast 
demonstrated its reliability to accurately predict the pres-
ent-day tides around Australia (for details, see Haigh et al. 
2014b).

The model grid (Figure 3) has a spatial resolution of 
1/12° (~10km) near the coastline. Away from the coast, the 
resolution drops to between 1/3° and 1/5° at the open tidal 
boundaries. The grid was configured using the medium res-
olution coastline by the National Oceanic and Atmospheric 
Administration (NOAA). Modern bathymetric data from 
the Geoscience Australia 9 arc second dataset (Webster and 
Petkovic 2005) was interpolated onto the grid. The open 
model boundaries were forced with output from the TO-
PEX/Poseidon Global Inverse Solution 7.2 (TPX07.2) global 
tidal model (Egbert and Erofeeva 2002; Egbert et al. 1994). 
Eight primary tidal constituents (M2, S2, N2, K2, K1, O1, P1, 
Q1), two long period constituents (Mf, Mm), and three com-
pound constituents (M4, MS4, MN4) were included. Tidal 
forcing is not only provided at the open boundaries; direct 
gravitational tidal forcing in the coastal areas themselves 
are accounted for through selection of the ‘tidal potential’ 
option in MIKE 21. Further details on the model configura-
tion can be found in Haigh et al. (2014b).

To explore the effects of the changing mean sea level 
on tides north of Australia, simulations were run for a se-
ries of mean sea level scenarios at 25m intervals, ranging 

In addition, the tidal range (the vertical difference be-
tween the high and low tide during a day) has been linked 
to coastal resource availability (e.g., Fa 2008; Veth et al. 
2017a). Coastal zones provide resource-rich and diverse 
environments offering a variety of subsistence options 
(e.g., Erlandson and Braje 2015). Humans have been sys-
tematically exploiting marine resources for 160,000 years 
(Jerardino and Marean 2010; Marean et al. 2007), and coast-
lines played an important role in the human migration out 
of Africa (Bailey and Flemming 2008; Bailey et al. 2007; 
Bailey and King 2011; Bulbeck 2007; Erlandson and Braje 
2015; Erlandson et al. 2007; Macaulay et al. 2005; Mellars 
2006; Mellars et al. 2013; Oppenheimer 2009; Stringer 2000; 
Walter et al. 2000). Evidence for pelagic fishing from the 
site Asitau Kuru (formerly known as Jerimalai; see Figure 
1) in Wallacea dates back 44,000 years (O’Connor and Ono 
2013; O’Connor et al. 2011; Shipton et al. 2019), while mari-
time skills facilitated the occupation of Wallacean islands 
(O’Connor et al. 2011). In Australia, evidence from Barrow 
Island and the Montebello Islands indicates coastal exploi-
tation during the Upper Pleistocene and Early Holocene, 
prior to sea level stabilization in the mid-Holocene (Manne 
and Veth 2015). The oldest evidence for marine exploitation 
in Australia, from Barrow Island, dates back 42,500 years 
(Veth et al. 2017a; Veth et al. 2017b). The coastal foragers at 
Barrow Island gathered taxa from mangrove, mudflat, and 
rocky substrate environments. People arriving in Sahul are 
likely to have encountered and exploited similar environ-
ments. 

Mean sea level fluctuations and associated changes in 
tidal regimes, coastal configuration, and sedimentation af-
fect coastal productivity, however, these changes are not 
necessarily linear (Ward et al. 2013; 2015). Together with 
archaeological and ecological research into the use of coast-
al resources, information on past tidal amplitudes can be 
used to explore changes in the coastal zone through time. 
Today, the northern coast of Australia has a macrotidal 
regime, with a mean spring tidal range exceeding 9m at 
King Sound (Porter-Smith et al. 2004). However, present-
day tide and current data cannot be used as a proxy for the 
past as the tides are subject to change over time (Haigh et 
al. 2020). During the Upper Pleistocene, changes in tides 
were dominated by changes in water depth associated with 
mean sea level fluctuations. In order to gain insight into 
the influence of the tides on seafaring to Sahul and coastal 
conditions on arrival, it is important to establish how Up-
per Pleistocene tidal conditions differed from present-day 
conditions. This paper models these tidal regimes with ref-
erence to the question of seafaring.

TIDAL MODELLING
The astronomical forces that regulate the tides are regular 
and entirely predictable. With increased availability of sci-
entific data, including high-resolution bathymetric data, 
and computational power, computer models can now be 
used to make highly reliable predictions of the tides in both 
the future and the past. As such, recent decades have seen 
an increase in global studies of Pleistocene tidal dynamics 
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thymetry over time and that tides remain unchanged in the 
deep waters along the model boundary. 

RESULTS
Figure 4 shows maps of the bathymetry over the Timor Sea 
for four mean sea level scenarios (0m, 50m, 75m, 100m). 
Cross-sections of the shelf at 124°E and 126°E (see Figure 
4E-F) show the contrast in depth between the shallow 
continental shelf and the deep Timor Strait. The model re-
sults are shown in Figures 5 to 7. Figure 5 shows the mod-
elled variability in tidal levels and current speeds over 
one spring-neap cycle, along two transects (1: 124°E, and 
2: 126°E). The locations for which tidal levels and current 
speeds are shown are marked with crosses in Figure 4. The 
locations were selected to lie close to the Australian shore-
line, where tidal amplitudes and currents are the greatest. 
Figures 6 and 7 display maps of the maximum tidal range 
and current speeds, over the simulated period, for the 0m, 
50m, 75m, and 100m scenarios. Maps of current speeds and 
directions during flood, high water, ebb, and low water 
have been included for the same scenarios in the Supple-

from 0m (the present-day scenario) to -150m. By doing so, 
broad-scale changes that occur in the tide with mean sea 
level change could be discerned. The 75m scenario corre-
sponds approximately to 65 ka BP. The model uses modern 
data, and a full month in a recent year (2010) was simulated 
for each mean sea level scenario. Each simulation starts on 
the 26th of December 2009 and spans 37 days. The first six 
days were not included in the results as they correspond 
to a spin-up period of the model. The largest tidal range 
in semi-diurnal regions (regions that experience two high 
and two low tides a day, such as the Timor Sea) occurs dur-
ing spring tides, when the Moon, Earth and Sun align. The 
tidal range is smallest during neap tides, when the moon 
and sun are at right angles to each other. The spring-neap 
cycle takes 14.76 days (Pugh and Woodworth 2014), so two 
spring-neap cycles were included in the results.

The model results (hourly predicted water levels and 
current velocities) were loaded into MATLAB using the 
DHI MATLAB toolbox 2014 and graphs of water levels and 
current velocities were generated. Note that the scenarios 
modelled assume that that there is no change in the ba-

Figure 3. The model domain, grid, and bathymetry (after Haigh et al. 2014b).
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Figure 4. A–D: Maps of the Australian continental shelf between 122°E and 132°E, showing the position of the coastline for the 
0m, 50m, 75m, and 100m scenarios. The dashed lines mark the transects described in the text. The crosses mark locations along the 
transects for which the tidal range and current speeds are described (see Figure 5). E–F: cross-sections of the continental shelf along 
Transect 1 (124°E) and 2 (126°E), with black horizontal lines marking the depth at 0m and 100m. 
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Figure 5. Tidal levels and current speeds over 15 days (1–15 January 2010) for four sea level scenarios (0m, 50m, 75m, 100m), at 
near-shore locations along two transects offshore northern Australia (see Figure 4). A: tidal levels along Transect 1. B: tidal levels 
along Transect 2. C: current speeds along Transect 1. D: current speed along Transect 2.
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Figure 6. A–D: the maximum tidal range in the Timor Sea during January 2010, for the 0m, 50m, 75m, and 100m scenarios. E: the 
maximum tidal range within the region marked by a dashed box in Figures 6A–D, for each mean sea level scenario (0m to 150m). 
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Figure 7. A–D: the maximum current speeds in the Timor Sea during January 2010, for the 0m, 50m, 75m, and 100m scenarios. E: the 
maximum current speeds within the region marked by a dashed box in Figures 7A–D, for each mean sea level scenario (0m to 150m). 
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variation over the spring-neap cycle is less profound. At 
present during neap tide on the 10th of January the maxi-
mum current speed is 0.27m/s. In the 50m scenario the 
maximum speed on this day is 0.39m/s. In the 75m scenario 
it is 0.19m/s, and in the 100m scenario it is 0.21m/s. 

Along Transect 2 (see Figure 5D), the highest current 
speeds also occur in the 50m scenario (0.99m/s on the 1st 
of January). In the present-day scenario, the maximum cur-
rent speed is 0.76m/s. Comparable current speeds (0.72m/s) 
are seen in the 75m scenario. The current speeds are much 
lower in the 100m scenario (up to 0.10m/s). This is related 
to the location for which results are shown—as seen in Fig-
ure 4E, this location (the yellow cross at 126°E) is not on the 
continental shelf but in the deep Timor Strait. At present, 
the highest current speed during neap tide, on the 10th of 
January, is 0.40m/s. In the 50m scenario, the current speeds 
are lowest earlier in the month, on the 7th of January (maxi-
mum 0.64m/s). The highest speed reached during neap tide 
in the 75m scenario is 0.51m/s (on the 9th of January), and 
in the 100m scenario it is 0.04m/s (on the 11th of January). 

Figure 7 shows that the highest current speeds in the 
Timor Sea occur in areas where depths are shallow (and not 
necessarily in areas where the tidal range is greatest). The 
maximum current speeds in the Timor Strait are between 
0.1m/s and 0.3m/s in both the -75m and the -100m scenarios. 
In the -75m scenario, the current speeds are strongest (up 
to 1.37m/s) around the islands in the Timor Sea (see Figure 
4C). In the -100m scenario, the highest current speeds are 
found near the Australian coast (generally between 0.3m/s 
and 0.6m/s, and up to 0.97m/s). The current speeds are 
strongest (1.57m/s at maximum) in the 50m scenario, and 
weakest (0.49m/s at maximum) in the 150m scenario.

DISCUSSION
The results presented here show that the northern Austra-
lian coast experienced great variations, through the last 
glacial cycle, in tidal levels and current speeds over the 
course of a day, and over the spring-neap cycle. Spatial-
ly, the phase and amplitude of the tides change along the 
vast northern Australian coastline (see Figure 5). Tempo-
rally, over the course of the Upper Pleistocene, tides change 
markedly with fluctuations in mean sea level over the Aus-
tralian continental shelf. 

Two key assumptions were made in this study. The 
first assumption is that the tides remain unchanged in the 
deep waters along the model boundary. This seems reason-
able based on results from previous global studies (Arbic et 
al. 2008; Egbert et al. 2004; Green et al. 2009; Griffiths and 
Peltier 2009; Montenegro et al. 2007; Thomas and Sünder-
mann 1999; Wilmes and Green 2014), but future work could 
consider driving the regional model with predictions from 
global models. The second assumption is that the bathym-
etry remains unchanged over time. Future work address-
ing this is taking place through the ERC funded ACROSS 
project, which is developing the hydrodynamic modelling 
approach to address changing conditions in deep time. 

The high tidal range of up to 6.6m seen in the Timor Sea 
at present (see Figure 6E) is the result of tidal resonance. On 

mentary Material (Figures S1 to S4). These figures give an 
impression of how tidal currents change over the course of 
a day. 

THE TIDAL RANGE
Tides along Transect 1 (see Figure 5A) are semi-diurnal, but 
there is a diurnal inequality (the two high and low tides that 
occur during the day differ in height). The spring tide oc-
curs at the start of the month (1–2 January). The tidal range 
is greatest in the present-day scenario (5.65m), and small-
est in the 100m scenario (2.91m). In the two intermediary 
scenarios (50m and 75m), the spring tidal range is 4.20m 
and 3.27m respectively. The difference between spring and 
neap tide is greatest in the present-day scenario, where the 
neap range (10–11 January) can be as low as 1.16m. The 
neap tidal range is 0.89m in the 50m scenario, 0.53m in the 
75m scenario, and 0.41m in the 100m scenario.

Along Transect 2 (see Figure 5B), the tidal range is 
smaller than along Transect 1, and the diurnal inequality 
is more evident. During the latter half of the month (25–26 
January, not shown here) the present-day neap tidal range 
is mainly diurnal. Again, the spring tidal range is largest in 
the present-day scenario (2.86m on 1 January; see Figure 4) 
and smallest in the 100m scenario (2.25m). The difference 
between the highest high water and the lowest low water 
around this time is 1.51m. 

Figure 6 shows that the tidal range is highest near the 
Australian coast in all scenarios. At present, the maximum 
tidal range is 6.6m. In the -50m scenario, it is 5.1m, and in 
the -75m and -100m scenarios, it is 4.2m. In the -75m scenar-
io (ca 65 ka BP), the tidal range is relatively low (up to ca. 
1.5m) in the Bonaparte Gulf. Figure 4 shows that a series of 
islands would have existed near the edge of the continental 
shelf, sheltering this area. Further west, near the Austra-
lian coast, the spring tidal range in this scenario is around 
4m, and in the Timor Strait it is around 2.5m. In the -100m 
scenario, most of the continental shelf is exposed, with the 
exception of the Bonaparte Depression, which is connected 
to the Timor Strait by a narrow channel. No tidal dynamics 
are seen in the Bonaparte Depression. Near the Australian 
coast, the spring tidal range is between 2m and 4m. In the 
Timor Strait, the spring range is around 2m to 2.5m. Figure 
6E shows the maximum tidal range in the region between 
124–126°E and 16–10°S (the dashed box on the maps in Fig-
ure 6), for all sea level scenarios. The tidal range is highest 
(7m) in the -25m scenario and lowest (3.7m) in the -150m 
scenario.

TIDAL CURRENT SPEEDS
The current speeds along Transect 1 over the first fifteen 
days of January (see Figure 5C) are highest in the 50m sce-
nario, with a maximum of 0.78m/s occurring on the 2nd of 
January. In the present-day scenario, current speeds of up 
to 0.62m/s occur. In the 75m scenario, the maximum speed 
along Transect 1 is 0.41m/s, and in the 100m scenario, it 
is only 0.39m/s. The difference in current speeds over the 
spring-neap cycle is greatest in the present-day scenario 
and the 50m scenario. In the 75m and 100m scenarios, the 
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of tidal dynamics, and daily and monthly patterns in the 
tides. With a world view that incorporated an understand-
ing of the temporality of the marine environment and good 
planning abilities, simple watercraft (e.g., rafts and log-
boats) with low paddling speeds (1–2 knots) would have 
been sufficient to successfully voyage to Sahul. In the case 
of this southern route presented, once seafarers reached 
the Bonaparte Gulf, where currents were weak, navigation 
would have been easier. 

Tidal currents may have had less of an impact on re-
turn journeys to Timor and Roti—the model results show 
that in the Timor Strait and near Timor and Roti (which 
have steep coastlines), tidal currents are less strong than 
near Sahul. This may lead us to question whether peopling 
travelling from Wallacea would have experienced tidal 
conditions like those on the Sahul shelf. In terms of seafar-
ing along coastal Sahul shelf, people could have used the 
strong currents to great effect.

   
TIDAL RANGE
The modelled tidal range gives a first insight into the po-
tential productivity of the coastline in the Timor Sea area. 
In the -75m scenario (65 ka BP) and even the -100m scenar-
io, a tidal range of 4m is seen along parts of the Australian 
coastline. Fa (2008) compared the tidal range and resource 
availability on the Atlantic and Mediterranean side of the 
Gibraltar Strait, and found that the Atlantic side is charac-
terized by high tidal amplitudes (3m) and high species den-
sities, whereas the Mediterranean side is characterized by 
low tidal amplitudes (15–30cm) and low species densities. 
While the southern hemisphere has different ecozones and 
tropical and sub-tropical coastal habitats, this does raise 
the question about links between tidal range and resource 
availability. In Australia, the evidence for early consistent 
use of marine resources from 42.5 ka BP and throughout 
the terminal Pleistocene (Veth et al. 2017a; 2017b) demon-
strates the productivity of the coastal zone. The coastal zone 
contained rich marine environments, including reef flats, 
rocky foreshore substrates, intertidal mudflats, and man-
grove communities. A correlation between the tidal range 
and coastal productivity is also discussed—the greater the 
tidal range, and the lower the gradient of the shoreline, the 
greater the carrying capacity for marine resource exploita-
tion (Veth et al. 2017a). 

Despite a smaller tidal range than at present, the maxi-
mum tidal range of 4m 65,000 years ago may also indicate 
a productive coastline. However, coastal ecozones would 
have differed locally and more paleoenvironmental re-
search is needed. What can be concluded, however, is that 
throughout the Upper Pleistocene, the global mean sea 
level fluctuated, causing tidal amplitudes to change, affect-
ing the productivity of the coastal zone. As mean sea level 
rose after 65,000 years ago (see Figure 2), resource avail-
ability along the Australian coastline may have increased, 
making the environment more favorable for habitation (but 
potentially less favorable for navigation); 50,000 years ago, 
the coastal gradient would have been less steep, and the 
tidal range greater. Although preliminary, this work sup-

continental shelves in areas with semi-diurnal tides, such as 
the northern Australian continental shelf, resonance occurs 
when the width of the shelf width is about one quarter of 
the tidal wavelength (Clarke 1991; Clarke and Battisti 1981; 
Godin 1993). At 65,000 years ago, when mean sea level was 
lower than today, the shelf was shallower and less wide, 
resulting in a lower tidal range than at present. Although 
there is no one-to-one correlation between tidal range and 
current speeds (the highest current speeds occur in areas 
with shallow bathymetry, and not necessarily in areas with 
the highest tidal range; compare Figures 6 and 7), the re-
sults show that from 65,000 to 50,000 years ago, both tidal 
current speeds and tidal range would have increased (com-
pare the -75m and -50m scenarios). The processes are caus-
ally opposed: higher current speeds may have hindered 
migration, but higher tidal range leads to increased pro-
ductivity and is therefore favorable for migration. Below, 
the effects of both processes on maritime migration will be 
discussed in detail.

TIDAL CURRENT SPEEDS
In consideration of distance and potential speeds of simple 
boats and rafts (Farr 2006), the crossing from Timor or Roti 
to Sahul probably took several days (Bird et al. 2018). Ev-
ery six hours, the direction of tidal currents would have 
changed (see Supplementary Figures S1 to S4). Early sea-
farers are unlikely to have been able to paddle at more than 
1m/s (2 knots)  for any length of time (Farr 2006). Seafarers 
departing from Timor or Roti would not have been strong-
ly affected by tidal currents in the Timor Strait, where the 
maximum tidal current speed would have only been up to 
0.3m/s (ca. 0.5 knot; see Figure 7C and D), nor, potentially 
would they have been familiar with such tidal currents. 
However, on the continental shelf of Sahul, tidal currents 
would have strongly affected navigation and sea state, es-
pecially during periods with the wind direction countering 
the tide creating rough seas. Even in the -100m scenario, 
tidal current with speeds of up to ca. 0.3–0.6m/s (ca. 0.5–1 
knot) are seen near the coast. In the -75m scenario, current 
speeds of ca. 1m/s (and above, in some areas) occur near 
islands during spring tide. In the -50m scenario, current 
speeds are even higher. Given the strength of tidal currents 
and the relative proximity of mainland Sahul, it was poten-
tially easier to reach Sahul around 65,000 years ago, during 
the MIS 4 sea level lowstand, than around 50,000 years ago. 

The results from the -75m simulation shows that dur-
ing part of the day, especially during spring tides, early 
seafarers were unlikely to have been able to make headway 
while paddling against the currents. However, even dur-
ing neap tides, tidal currents would have affected seafar-
ing, as shown by the current speeds of 0.41m/s and 0.51m/s 
near the Australian coast at 124°E and 126°E (see Figure 5). 
Timing and planning would have been key to the success 
of these voyages. Tides could have hindered early seafar-
ers, but also could have been used to expedite journeys. 
As such, early seafarers would have benefitted from long-
term planning abilities to make safe, successful voyages to 
the islands on the Sahul shelf, aided by an understanding 
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ing of the environmental context for this early seafaring can 
shed light on past human behavior, seafaring skills, and 
social organization (Farr 2006). When the potential speeds 
of simple watercraft are considered, a good understand-
ing of the marine environment (including daily, seasonal, 
and annual patterns in the weather and the tides) would 
have been essential for these early voyages to be success-
ful. Watercraft must have been strong enough to stay intact 
for days, and seafarers must have had access to freshwa-
ter, or at least, been able to collect rainwater. Such voyages 
would have required particular maritime skills, long-term 
planning, knowledge of marine environmental conditions, 
and adaptability to those encountered if they were to be 
successful. 
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